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I. INTRODUCTION

Cable shields and cable conduits have been widely used as part of the
integrated electromagnetic pulse (EMP) hardening design for aircraft, missiles,
and ground-based systems (Ref. 1). When cable shields are used over a long
distance, they are generally periodically grounded to their immediate outer
shield through bonding straps, clamps, screws, etc. The periodic grounding

.provides mechanical rigidity of the shields, reduces the electrostatic hazards,
and at the same time might increase the shielding effectiveness against pene-
tration of long-wavelength disturbances. However, for the broad-band EMP, the
question arises whether thé periodic grounding will improve or degrade the
overall shielding effectiveness. In this report, this question will be
answered from a rigorous theoretical analysis. The analytical results

will help the system engineers to determine the optimum grounding arrangement.

Cable shields generally are not perfect. EMP can penetrate either
locally (such as through an aperture, a connector, or one end of the shield,
see Fig. 1) or distributedly (such as through diffusion or uniformly
distributed apertures, see Fig. 2). These two distinct cases will be
separately discussed: discrete excitations in Section II and distributed
excitations in Section III. Finally, the results obtained in Sections II
and III will be summarized in Section IV, and several practical engineering

examples as to how the results can be used will be presented.
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II. DISCRETE EXCITATIONS

In this section, the outer shield of a double-shield configuration
on Figure 1 1s assumed to be perfect, except at some isolated locations
where the EMP can penetrate. The current and charge density distributions
P on the transmission line formed by the two shields due to the penetration
: from a localized location can be calculated by solving the problem depicted
in Figure 3. The distributions due to the voltage and current sources of
the localized penetration can be separately considered. The two problems
of Figure 3a can be decomposed further ( Fig. 4 ) so that only the problem
i,Vg or V: and
Is = Ii,I; or Iz) need be solved. The coupling to the wires inside the

shown in Figure 3b (which is redrawn as Fig. 5 with vi=vy

inner shield can then be calculated by multiplying the appropriate transfer !
impedance or charge transfer frequency of the inner shield by the current

or charge density distributions. The time variation of exp(jwt) will be

.
rran enaihla st +

assumed and suppressed throughout this report.

At sufficiently low frequencies the TEM mode is dominant and the
voltage (V) and current (I) distributions along the line shown in Figure 5

can be calculated by solving the following pair of equations:

: av "7 =
N Tezi1=0 (1)
I E 5(z-nd) |V =0 for z > z )
dz 1 d ’ — %o
n’-@

— ke e e s

where Z! and Y! are, respectively, the series impedance and shunt admittance

' . 1 1
- per unit length of the line and Y, is the admittance of each strap.
,;;; From Floquet's theorem, the solution of the periodic Equations 1 and 2
i - has the following form:
| .
V(z) = |V exp[-j(k+2nr/d)z] (3)
Nx=co
v ?
I(z) = z Inexp[-j(k-onv/d)z] (4)
=™ =~

12
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Substituting Equations 3 and 4 into Equations 1 and 2 one has

= 5 ]
In j Vn(k + 2n1r/d)/2l (5)
1
] - '
3 Y44y v°
.. Vn = > E— (6)
Y'2! + (k + 2nw/d)°
3 171
where
o -
vV v N
I~ n=-cn

By combining Equations 6 and 7, one finds that the dispersion relation
between k and V—Yizi is (also see Ref. 2)

zly d
cos kd = cos(dv-Y'Z!) + —id_ sin(dv-Y'Z!) (8)
11 24 C?TET 171
171

In Figure 6, cos kd is plotted versus dV-YiZi = wd/c) for various

ag (= Zind). (Generally, Zi, Yi and Yd are complex values. To have

: I ' Vo ot [PV TS |
- real and p031tizi d YlZl and Zled, one can assume Z1 ch, Yl Ycl
' o~ ' [} . .
N and Yd (ijd) , where ch and YCl are purely imaginary and are
respectively the values of Zi and Yi of a perfect double shield, Ld is

the inductance of each bonding strap). In the figure, one clearly sees

the passband and stopband structures. The stopbands are generally broader
for a larger qq> especially at the lower wd/c region. This is reasonable
because a larger qg means a better grounding. At the higher wd/c¢ region,
the stopbands become narrower because the high-frequency disturbance does
not see the presence of the bonding straps. Also, to have the proper

propagation and decaying constants for z > z,, one should restrict the

* A A N
S i. \
— el - — b

k-value to have a positive real part and a negative imaginary part. The
imaginary part of k determines how fast the disturbance decays when it
propagates away from the penetration point. A plot of |Im(kd)| versus
frequency for various 4g is given in Figure 7. Figure 7

obviously shows that a larger qg 8lves a larger |Im(kd) | (which means

16
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that the disturbance decays faster) and thus, is more desirable.
at the low-frequency limit where V-Yizi d = wd/e << 1, one can easily show

that

?

| Im(kd) |

1]

cosh-l(l + qS/Z)

cosh-l[l + Lyd/ (2L )]

Actually,

(9

(10)

where Li is the series inductance per unit length of the double shield.

Using Equations 5 and 6 in Equations 3 and 4, one has

V(z) = Vo

)

R (X
Vo (YlZ

(Y!z: +k2)

1

171 e-j(ki—an/d)z

new ¥'2' + (k+207/d)>

171

~v-k2)d2

g
deld

ikdm+1/2)

cos(kd/2) cos [ ((m+1/2)d - 2) =3 ]

X

+3

I(z) =V

- ot 2 11y g2
v, av Y121 (k" +¥121)d

cos(dV-YiZi/Z)

sin(kd/Z)sin[( (m+1/2)d - 2)/=¥72] ]

-

)

sin(d/-Yizi/Z)

formd < z < (m+1)d

2
] 1
JAPZL+KTD) o onng (-3 (k+2an/d)z

n=-x Y'Z! + (k-+2nﬂ/d)2

1”1

sin(kd/2)cos [( (m+1/2)d-z)

' 1
(deZl)Zld

[]
2

e-jkd(m +1/2) <

)

X

sin(d«LYiZi/Z)

19




gl s .
.

cos(kd/2)sin [ ( (m+1/2)d - z)/—YiZ' ]

+ 3 L (12)
cos(dV—YiZ]'_/Z)
formd < z < (m+1)d
1l d
ST v(z)

To obtain Equations 11 and 12, one has used the dispersion relation 8 and
several series summation formulas in Reference 3. With the expression for
I(z), one can calculate the total charge per unit length of the double shield

from

Y(z) = - =&
Q' (2) = Jo dz I(z) (13)

As is obvious from Equations 11 and 12, Vo is yet to be determined
from the boundary condition at z = z,- In what follows, the cases with the

voltage and current sources will be considered separately.

1. VOLTAGE SOURCE

Applying the condition that V = v° at z=z_, one immediately obtains
from Equation ll that
-2'y, v° .
1d eJkd/Z 3

Vv = 3
tet
(k +lel)d

[¢)

cos(kd/2)cos| (zo ~d/2) V-Y]'_Zi]

x

cos(dV-YiZi/Z)

sin(kd/2)sin[ (zo -d/2) V-Yizi

-3

sin(d/-YiZi/Z)

20




The voltage, current and charge distributions of the double shield can be
fully expressed by Equations 8§, 11, 12, 13 and 14 provided v® is known.
For the problem of Figure 3b, Ve is simply Vz. However, to obtain vs
}| : (Note, one uses Vs = Vi for z > z, and V° = Vg for z < zo) for the problem
of Figure 4a, one needs to go through some complicated algebraic manipula-
tions involving Equationsl2 and 14 and the relationships given in Figure 4a.
by For the special cases of z°=-0 and d/2 which are the cases to be considered
in the following discussions, Ve o= Vi = Vg = V2/2. Vz can, generally, be
obtained from the short-circuit current Isc at the outermost surface of the

double shield and the transfer impedance Z_, of the outer shield via

Tl

s
vo IchTl (15)

Since I(z) and Q'(z) are now known, one can begin to discuss the
coupling to the wires inside the inner shield. The coupling can be
completely described by V;(z) and I;(z) which are, respectively, the
valtage and current source terms of the transmission-line equations of
the inside cables. If the inner shield has a shield transfer impedance

: i per unit length Z,, and a charge transfer frequency Q,, then, V! and I!
can be calculated from (see Ref. 4):

V;(z) = Z%zl(z) {16)

; |
: | I'(2) = p,Q' (2) an

With the above expressions one can then define an effective transfer

Y- impedance per unit length Z%V and an effective charge transfer frequency
s, per unit length Qév for the double shield as follows:
R ‘ A
* 2y (2) = Vi(2)/1 (18) F
1] 1]
QTV(z) = juw Is(z)/Isc (19)




Here, the subscript "V'" is used to indicate that the quant

localized voltage source which is generated by Isc'

The two quantities Z%V and Qév are z~dependent. When
are in the stopbands, they become extremely small for z >>
exponentially decaying term in Equation 12). On the other
frequencies are inside the passbands, they are oscillatory
and are modulated by the periodicity of the bondings. It

that in order to better quantify the coupling to the wires

inner shield, one should apply some average schemes to ZTV

the period d. A natural scheme is to define

) '
Zry L ((@+1)d 21y (®
jkz
= = e dz
_ 3
] 1
Sryv md 2y ()

where nm < kd < {(n+1)7 when nm < V—Yizi d < (n+l)7, n=

two average quantities are calculated to be

ities are for a

the frequencies
zg (see the

hand, when the
functions of z

thus appears

PP,

inside the

)
and QTV over

(20)

0,1,2, .... These

' N\ T
= ‘n’re \_ <. v s 0 T WS b U
v e n kd

n, 2,7y P

= (21Y ) (kd) exp(kd/2)

X

-,/_vv 2 yipry a2
( ZlYld)(k -+lel)d

cos(kd/2)cos[(zo-d/Z)V-ZiYi]

X

cos(dV-ZiYi/Z)

sin(kd/2)sinl(z, - d/2)/-Z]1]] -1

-3
sin(dV-ZiYi/Z)

where np = 1 for Figure 3b and np = 2 for Figure 3a,

22
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E%V and ﬁ}v still depend on where z =z is. However, no matter what

2z, is, one can easily observe that the normalized ]E}Vl and lﬁ}vl (normalized
with respect to their values when there is no bonding, which are, respectively,
ZTIZ%zl(np/E{7?I)and ZTIQTZYi/np) are greater than unity for some regions of ‘
/:ZIYI.d (= wd/c) and smaller than unity for the others. That is, the i
bondings improve the shielding effectiveness of the double shield at certain
frequencies but degrade it at the others. Plots of the normalized lf}vl

and IE}V[ for z_ =0 and d/2 as functions of /:EEYI-d and q¢ (= Z;Y.d) are
given in Figures 8 through 11. In the figures, the curves are not given

for the stopbands. In the stopbands, the normalized quantities are
exponentially decayed away from the penetration point. Since the ranges

of the stopbands increase with qq, One should try to have dg as large as
possible for better shielding effectiveness. This can be achieved by

making Zin (= Li/Ld) large. Note that making d large, although
increasing dg» widens wd/c and hence narrows the stopbands. From the
figures, one also sees that arranging the bondings with d = cnn/w (where
resonances occur) seriously degrades the shielding effectiveness, and thus

should be avoided for the important parts of the EMP spectrum.

2. CURRENT SOURCE

Applying the boundary condition that I = 1° at z=z , one obtains

from Equation 12:

P tyot
jI (dezl)Zld

v eJkd/2 x

[o] = /_'_, ] 2 1ot 2
d lel (k -+lel)d

sin(kd/2)cos[(zo'-d/Z)V-YiZi] I
X .

sin(d/—YiZi/Z)

cos(kd/Z)sin[(zo-d/Z)V-YiZi] -1 !
-3 (22) |
cos(dV-YiZi/Z) |
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The voltage, current, and charge distributions of the double shield due to
the current source shown in Figure 5 can then be completely described by
Equations 8, 11, 12,13, and 22, provided that I° is known. Here, similar
to the voltage-source case, for the problem of Figure 3b, 1° is Is.

To obtain Is (Issli for z > z, Is=‘[s for z < zo) for the problem of

2
Figure 3a or 4b, one has to solve Equations 11, 12 and the equations given
in Figure 4b. TFor the special cases of z, =0 and d/2, 1° =Ii =I§=Iz/2.

From these current and charge distributions, one can calculate the voltage-

and current-source terms of the transmission~line equations of the inside

cables using Equations 16 and 17.

The current source of the shield Iz can generally be estimated from

the short-circuit charge density Qéc on the outermost surface of the double

shield and the localized charge transfer frequency le (which has a dimension
of frequency x length, different from that of QTZ) of the outer shield via

(for example, see Equation 38 of Reference 35)

L

Tl (23)

S _ ot
L QscQ

One can also define an effective transfer impedance ZTI and an effective

charge transfer frequency for the double shield as follows:

= y! s
ZTI(Z) Vs(z)/(JwQsc) (24)
= 1! '
QTI(Z) Is(z)/Qsc (25)
3 where the subscript "I" is used to indicate that the quantities are for

a localized "current" source which is generated by Q;c.

t ' -
Similar to ZTv and QTV of the voltage-source case, ZTI and QTI are

also z-dependent. They become very small far away from z, in the stopbands,

are oscillatonry and modulated by the periodicity of the straps in the

e e a— s

passbands. The averaged quantities Z 1 and ﬁi

T are given by

1
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) -(Zind)(kd)exp(jkd/Z) .

[yt 2 1ory 42
ZlY1 d (k -+YlZl)d

sin(kd/2)cos{(z = d/2) /-ZiYi]

X

sin(dV-ZiYi/Z)

cos(kd/Z)sin[(zo-d/2)¢-ZiYi]

-3 (26)
cos(d/-ZiYi/Z)

E&I and 5&1 also depend on where z=z is. However, no matter where
z, 1s, one still sees that the normalized ‘Efl‘ and Iﬁill (normalized with
respect to their values when there is no bonding, which are, respectively,
lezézl(jmnp) and legTZ —ZiYi/(npm)) are greater than unity for some
/:E;?I d (where the bondings degrade the shielding effectiveness) and
smaller than unity for the others. Examples of the normalized |E&I| and
lﬁ&ll for z°==d/2 as functions of /:EI§§ d and qq are plotted in Figures 12
and 13. Similar to Figures 8 through 11, the values at the stopbands are
not given. For better shielding effectiveness, one should try to increase
Zin and avoid wd/c = nam (n=1,2,3, ...).
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III. DISTRIBUTED EXCITATIONS

In this section both the outer and inner shields are assumed to have

3 uniformly distributed transfer functions: Zél
|
per unit length), Q (charge transfer frequency) for the outer shield

(shield transfer impedance

and Zéz, QTZ for thzlinner shield (Figs. 2 and 14). The outer shield is
3 different from that discussed in Section II which has localized transfer
; parameters. The total current It and total charge per unit length Qé of
. the double-shield cable are assumed known. I, and Qé are also assumed to
: be dependent upon z as exp(-jhz) and related to each other via
i juQ! = - S 1 = jnI (27) !
; t dz "t t :
' In what follows, results for this distributed double shield without bonding
‘ straps are presented first, and then, the more general case with periodic
bonding straps is discussed.
1. SCHELKUNOFF'S CIRCUIT (REF. 6)
When the shields are solid tubular conductors, QTl = QTZ = 0, and the
current-source term I; of the transmission-line equations of the inside
i cables vanishes. As for the voltage-source term V;, when hd = 0 and
: whyog >> hz, it can be calculated from the circuit depicted in Figure 15
which is valid regardless whether the bondings are present or not
X (Ref. 6). The circuit elements in the figure are defined and given as
2 follows:
4 j
:
LT' z;i = surface impedance per unit length of the i-th shield |
!?: with internal return (i =1 for the outer shield, ;
: .“ i=2 for the inner shield)
Yy
" Zrao,D; [Io(Yiai)Kl(Yibi) + Ko(Yiai)Il(Yibi)]
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Z'. = surface impedance per unit length of the i-th shield

bi
with external return
Yi
™ Twb oD, [1 CrgPy® (vgap) + Ko“ibi“l(*iai)J &
z' = —____AL____
Ti eroiaibiDi
Zél = series impedance per unit length of the double

shield when assumed perfect
= juwu tn(ay/by)/(2m)
where

D, = Il(Yibi)Kl(Yiai) - Il(Yiai)Kl(yib )
= jwu,o, = 29/6° (29)
Yy POy F 3794

His ci, a,, bi’ Gi = permeability, conductivity, inner
radius, outer radius, skin depth

of the i-th shield

and Io, Il, Ko’ Kl are the modified Bessel functions. From the circuit,
one immediately finds that the effective transfer impedance per unit length
Zq (= V;/It) of the double shield is given by

z Zl Z! |

TLl T2 Tl T2
Z' = 0 1 = g (30)
T Z +zb2+z Zl
where
[} ' '
Z1 + sz + ch (31)

Evidently, Equation 30 and the circuit in Figure 15 can be extended easily
to describe the effective transfer impedance per unit length of a N-surface
solid tubular shield with N > 2.

35
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Although Equation 30 looks simple, the circuit elements in the expression
are complicated functions of frequency and shield parameters (see Eqs. 28 and

) = b, - o .
29). When Ai ( bi a;, the thickness of the i-th shield) << ai'bi and Yi3;o

Yibi >> 1, the circuit elements Zéi, Z;i’ Z%i can be approximated by
Yiby
2!, 22!, 22! = —== coth(y.h,) (32)
ai bi Ii 2 Q—BTE,A. ii
i7i7id
Y.4,
' ii

n

, = —————— csch(y.4,) (33)
U /aboo.a, il
171715

where Zii is referred to as the internal impedance per unit length of the

i-th shield. Equations 32 and 33 can be further approximated by

1
2! =) 22! 22! xR' = ———— (34)
ai bi Ii Ti de,1i ZW/Z_BTE.A.
ii717i
when YiAi << 1 (i.e., 61 >> Ai)’ and
' ~ ' ~ [ ~ [}
O LS TR FL L P (35)
Y484
v '
2 TER PLTLY L (36)
when v A, >> 1 (i.e., A, >> §.). Here, R' . is the dc-shield resistance
il i i dec,i

per unit length of the i-th shield and the real part of Yy is taken to be

positive,

2. CASEY'S CIRCUIT (REF. 7)

' ~ 2 N oot A .
)2 When 61 >Z Ai (which gg;rantees Zai Zbi ZIi zTi’ see Eq. 34),

2 . ZIYIRE & _ 2t wt ot '

h bl ZlYl 1 chYclbl << 1 (Ycl is the shunt admittance per unit
length of the double shield when assumed perfect and no bonding straps), and
there is no bonding strap, the circuit diagram shown in Figure 16 can be used

to calculate the current I flowing on the inner shield (Ref. 7). 1In the
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circuit Y'i‘i (i=1,2) are the capacitive transfer admittances per unit length
of the shields, which are related to QTi via,
= _ 1yt
l Ury RIS (37)
where
1 1 1 1
woyL Y TR G
1 cl Tl T2
1 1 1
WY, Ty (39)
2 c2 T2

and Yéz is the shunt admittance per unit length of transmission line formed

by the inner shield and the wires within when Y’i‘2 =, : !
From the circuit, one has ]|
.‘ 2 )
- ' L}
'.‘T~\. I AN h /YTl
' I

\j 2 1 1 2 L} L} 2 *
t (le + h /YTl) + (zT2 + h /YTZ) + (zCl + h /Ycl)

2
Z!'. + h/Y!
_ .11 Tl
TR (40)
» Z; +h /Yl
b
where
' 't = ' 1 '
: Zy=in*tinptig (41) L
‘ from which one immediately has
ﬁa z! Q YA hz/Y'
:' B | T = T = Tl Tl (42)
" 1 S
o zrz Gy 2! 4 hZ/Y'
1 1
{
When h » 0 and Y'i‘l = Y'i‘Z = o, Equation 42, indeed, reduces to Equation

with 61 >> Ai' It is believed that the above thin shield (Gi >> Ai)

38
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approximation, Equation 42, can also be used for thick shields provided that

Zi defined in Equation 41 is replaced by Equation 31, i.e.,

[ ] t 47
Zl Zal + Zb2 Zc

1

and a more general circuit can be constructed (Fig. 17). Here, the
circuit elements Zél and Zgz should be defined in a broader sense than
Equation 28 to include all kinds of penetrations. This circuit can also

be easily extended to describe a N-surface shield with N > 2.

Up to this point the discussion in Part 2 has been restricted to the
situation that there is no bonding connecting the shields. When there are
l, (V-Yizi)-l, it is postulated that

the circuits and equations can still be used provided that Yi is replaced

periodic bondings with period d << h™

by Yi + Yd/d,i.e., Equation 42 becomes

[ ] L} 2
Iy 9 Zpp YR /Y
A I 2 (43)
12 Y12 2y + 0/ + /0

In the following, a general analysis of a double shield with periodic bondings
will be given. The results of the analysis will show whether the simple

Equation 43 is accurate enough under the imposed conditioms.

3. GENERAL FORMULATION

To obtain the current I flowing on the inner shield one has to solve

the following transmission-line equations (Fig. 14):

2! 17 = 71
I * 2! Z'rllt: (44)
ar | ° Y
— ' - T - — '
T +lY1 + Y, ] 6(z=nd)| Vv Ju 3 Q¢ (45)
n==o Tl
39
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The shields are aésumed to be infinitely extended in both +z and -z
directions so that only the particular solution of the equations need be
considered. This particular solution can be written as follows (from

Floquet's theorem)

. © Y
I(z) = e-_‘]hz Z Ize j2nrz/d (46)
V(z) = e7IhE | yPeriZoma/d %7)
n=-=w

After substituting Equations 46 and 47 into Equations 44 and 45, and going
through some complicated algebraic manipulations and series summations,

one eventually has, for md < z < (m+1)d,

2

' ) h 1oyl gty
4 b4zt Y4 It T4
I(z) =1, g7~ L+ oy 2 "
] ' t ]
11 nP+zly) 1 2@ ¥l +h

2 sin[(h+(—l)nV-Y'Z')d/2]exp[—j(h—(-l)nV-Y'Z')(md-—z-+d/2)]
n=1 cos(d/-YiZi) - cos(hd) + YdZisin(deYiZi)/(Z -¥12))

from which Q'(z), Z% and QT can be calculated via

) =_ L d
Q' (2) jo az I(2) (49)
z.'r = zi,zl(z)/lt (50)
iQ
e _T2d I(2)
S * % 4z I, (1)

Both Z! and Q. are z-dependent. In order to better quantify the

T T
transfer functions, one takes the average values of Z% and QT over the
period d of the bonding straps. These average values, designated as i}

and 5&, are independent of z and are given as

41
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ZT . QT . Ioe
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Zrp g L
F v hlezy 2 z'yl -z'y!
: ! TI'T1), , __h TITL ‘11 |
Y! 2 tot 2 1yt [] ] 2
Tl h -FZlYl h -FZlYl ZTlYTl‘+h
Y cos(dv-Y!Z!) - cos(hd)
d 171
x (52)

dY' A 1] 1 ] 3 ¥
1 cos(dV-YlZl) - cos(hd) + Yd2131n(d/¥Y12i)/(2/¥Yi2i)

It can be shown that Equation 52 reduces to Equation 43 when

|hd - /_Yizi.dl = |a| << 1, hd >> q¢ (= 2 ,Y,d) (53)
|tan hd| >> |a|, (i.e., |hd - nn| >> |a|, n=0,1,2,...) (54)

The conditions 53 and 54, obviously, are different and less restrictive
than those imposed on Equation 43 during the discussion in Part 2. In
most practical situations, Conditions 53 and 54 can be satisfied, and
Equation 43 can be used. In the case that the constraints 53 and 54 are
not met, one has to resort to Equation 52 which is a complicated function
of the frequency and the s-ield parameters. The shield parameters Z]

T1’
%1, Yi, Zi, etc., are generally complex values. However, when the

diffusion penetration is not important (which is true for most highly

-

conducting shields at frequencies larger than 10 kHz), the shield parameters ;

1]
Zry»

the apertures such as in the case of braided cable shields), and Equation 52

Y%l’ etc., become purely imaginary (i.e., the penetration is through

..
A.'.'x‘.;g:ni.&.ﬂ ..

becomes a real function. This real function is plotted in Figures 18 through

25 as a function of hd = v-Y' Z'1 d = wd/c (from 0 to 10) by using qz==2%1/2é1,

cl e

( = V! ' = 7! =

. qY Ycl/YTl and qS chYdd (= 0.1, 0.5, 1,2) as parameters (also assume
4 ' -~ ' ! ~ =

ZTZ/zcl 0, Ycl/YTZ 0). The values for the parameters (qY,qZ) (0.004,

0.01) and (0.001, 0.002) are for some typical braided cable shields (see

42
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Pages 581 and 584 of Ref. 4). 1In the figures, the curves of the approximate
Equation 43 are also given. The agreement between Equations 43 and 52 in
the region where wd/c is not close to nv (n=1,2, ...) is clearly shown
even when hd is smiller or in the order of qq- The reason they agree when
hd < qg is simply because both Equations 43 and 52 have values in the order
of 9y Or q, (<< 1). Because of this, probably one can 1lift the condition
hd >> g in Equation 53. From the figures one can draw the same conclusions
as those of the discrete excitation case that the bondings improve the
shielding effectiveness at certain frequency ranges while degrade it at
others. In order to widen the frequency ranges for better shielding
effectiveness, one may try to increase Zle Also one should not use a

d -value which causes resonances (where wd/¢c = nwm, n=1,2, .. .) and thus

seriously degrades the shielding effectiveness.

Equation 52 can also be rewritten in the following form:

1 o 2 '
Zp 8y Tl R ]
zl = Q = \ ot (35)
T2 T2 Zl + h /‘Yl + qu/d)
where
q
q = 1 (56)

1+ dY z! (q2 qlﬂ[ﬂm +Y )d ]

- 21Y /(2 e+ h?) (57)

9y = @p¥n T1'T1

sin(d/LY )/(d/-Y 7! )
0 = (58)
2 [cos(d/T]2]) - cos(hd)1/[(n + ¥i2)d%/2]

Equation 55 can be easily represented by a circuit (Fig. 26). Under the
assumption that the diffusion penetration is not important, the g-values
are plotted in Figures 27 and 28 as functions of hd = V-Yélzél d = wd/c,

with 975 Qy and qg as parameters, The values of the parameters in Figures 27
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and 28 are the same as those of Figures 18 through 25. From the figures,
one can easily see that q =1 when Conditions 53 and 54 are satisfied;

that is, Equation 55 reduces to Equation 43. This is another proof that

[P

. ’ the simplified Equation 43 can be used for Equation 52 or 55 when the
Conditions 53 and 54 are satisfied.




IV. SUMMARY

In this section, the results of Sections II and III are summarized

and some examples are worked out to show how the results can be used.

1. DISCRETE EXCITATIONS

When the outer shield of a double-shield configuration is coupled
to a localized voltage and/or current source (Figs. 1 and 3), one may
employ the Floquet theorem to the periodic transmission-iine equations
to determine the disturbances propagating down the bonded double shield.
A passband-stopband structure in the dispersion relation between w and k
is observed (Eq. 8 and Fig. 6). In the stopbands the disturbances
decay exponentially away from the penetration point, whereas in the
passbands the disturbances oscillate persistently. In the stopband the
decaying constant can be easily determined from the dispersion relation.
Curves of the decaying constant are plotted in Figure 7. At low frequen
the decaying constants can be calculated from the simple approximate

Equations 9 and 10.

a. Voltage source (Vz, see Figs. 3b and 4a)

The voltage source can be calculated from

v =1

o chTl (5

where Isc is the short-circuit current on the outermost surface of the
double shield, and ZTl is the localized transfer impedance of the outer
shield. This voltage source gives rise to V; and I; which are the

voltage- and current-sources exciting the wires inside the inner shield.

'

v
1
v 2

By defining a combined effective transfer impedance per unit length Z

and a combined effective charge transfer frequency per unit length
-1
ZTV Vs/Isc

A = *
QTV ijs/Isc
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one can fully describe the coupling through the bonded double shield due to

a voltage source Vz (or Isc’ see Eq. 59). Z%V and Q)  are averaged over

TV _ ‘
the period d via Equation 20. The averaged quantities E}V and in are ]
( given in Equation 21 and plotted in Figures 8 through 11 after normalized
3 -1/2

- ] 1 L L
3 to their values for no bonding strap (leZTZ(leYl) /np and ZTlﬁTzYllnp, ;
respectively, where np=-l for Figure 3b and np=-2 for Figure 4, Z%Z and QTZ §
- are the coupling coefficients of the inner shield). f

b. Current source (Iz, see Figs. 3b and 4b)
The current source can be calculated from

S .t oL :
Io QchTl (60) '

where Q;c is the short-circuit charge density on the outermost surface of
the double shield and Q;l is the localized charge transfer frequency of the
outer shield. This current source gives rise to different V; and I;

(different from those due to Vi). By defining a combined effective transfer

impedance Z.,. and a combined effective charge transfer frequency QTI via

TI
Zpp = V1/(3uQ))

= ' ]
QTI Is/Qsc

one can describe the coupling through the bonded double shield due to a

S [ .
current source I° (or Qsc' see Eq. 60). 2 I and QTI are also averaged via

T

Equation 20. The averaged quantities E&I and E&I are given in Equation 26

and plotted in Figures 12 and 13 after normalized to their values for no
L

T ' L
% bonding strap (QTIZTZ/(npjw)’ QTlﬂTzl(cnp) respectively).
27? Figures 8 through 13 (or, more generally, Eqs. 21 and 26) show that
: i the absolute values of the normalized transfer quantities are less than one

(where the bonding straps improve the shielding effectiveness) at some
frequency ranges and greater than one at the others. The figures also show
that the transfer quantities become infinite at wd/c = nn (a=1,2,3,...).
The transfer quantities, however, are not given in the stopbands (also see

Figs. 6 and 7) where they are extremely small far away from the penetration

point.
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From the above observations, one concludes that in order to have a
better shielding effectiveness, the periodic bonding should be employed
such that the important part of the EMP spectrum lies inside the first
stopband. This can generally be realized by choosing an appropriate d
when Yd and Zi are specified. Also, in order to have a broader first

stopband and a greater decaying constant, one should try to make ZiY larger.

d

¢. Examples

For a coaxial double shield with outer radius (b) = 5 cm and

inner radius (a) = 3 cm, one has

2y = 3uly =57 ’“‘(%) = 10750 (2/m) (61)

[
i -
n
e
o
~4
o
L=y
a
lingiitge

Also, suppose that highly conducting wires of radius t=1 mm are to be

used for bonding, then, ;

27 1

~ < -l o -l f’
Y, = (Jde) * (jw) po(b-a) n(2(b=-a)/t) (62)

= 6,7 ><107(J'm)"l (n)'l

Ly = L.5x 10'814

Thus,
-1
! =
Zle 6.8 (m )
The question now arises as to the spacing d to be used. Take d = 0.6 m
and 0.3m as given in Table 1. Both cases give rather wide first stopbands
which cover the important EMP spectrum. However, the case of d=0.3m
gives a wider first stopband and a larger decaying constant (note that a

decaying constant of l(m-l) corregponds to an atteunation of 8.7 dB/m).
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1
possible for better shielding effectiveness. If the double shield is

Another important quantity is Z Yd’ which should be made as large as
coaxial, one can use a smaller (b-a) to obtain a larger zin (Eqs. 51 and 62).
The case of b=4 cm and d =0.6 m is also given in Table 1. From the

table, it is observed that the first stopband is wider and the decaying

constant 1is larger for b=4 cm, d=0.6 m than the case for b=5 cm, d =0.6m.

TABLE 1. EXAMPLES OF BONDED COAXIAL~CABLE SHIELDS

b=5cm a=3¢cm t=1mm | b=4cm a=3cm t=1lmm

''=0. = ' = =
(Ll 0.1luh/m, Ly 15 nh) (L1 57 nh/m, Ld 6 nh)
Period of Bondings d=0.3m d=0.6m d=0.6m
Z'Y, (= L!/L)) 6.7m t 9.6m -
1¥a = L1/ : :
lst Stopband 0+205 MHz | 0 <137 MHz 0 <160 MHz
, |Im(k) |, Below 10 Miz | 4.4m L | 2.9m™% 3.4t

2. DISTRIBUTED EXCITATIONS

Given the distributed transfer parameters of both the inner and
, outer shields (Figs. 2 and 14), the effective overall transfer parameters
of the double shield can be represented by simple circuit diagrams. These

circuit diagrams are summarized below.

a. Schelkunoff's circuit (Ref. 6)

When the shields are solid tubular conductors whose skin depths,
linear cross-sectional dimensions and the period of the bonding straps
are much smaller than the wavelength of the EMP disturbance, the effective
transfer impedance of the double shield Z.i. (the effective charge transfer

frequency QT is, of course, zero) is independent of the bonding straps

and can be calculated from the circuit depicted in Figure 15 or from

Equation 30. The circuit elements in Figure 15 and Equation 30 are

LR T

given in Equations 28 and 29, and also Equations 32 through 36 for some
special cases. The circuit can be easily extended for a N-surface solid

tubular shield with N > 2.
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b.

Casey's circuit (Ref. 7)

When (a) the skin depths of the shields are much greater than
their thickness (8 >> A, thin shields), (b) the linear cross-sectional
dimensions of the double shield are much less than the wavelength of the
EMP disturbance (hb = /:inz-b << 1), and (¢) there is no bonding strap,
then, Z.! and QT can be calculated from the circuit of Figure 16 or from

T

Equation 42. The circuit elements in the figure and the equation are ?

given in Equations 37, 38, 39,and 41.

When the shields are not thin, the circuit of Figure 17 (called
the generalized Casey's circuit) can be used to replace that of Figure 16
for calculating Z% and QT. Equation 42 is still applicable, except that

the circuit element Z!

1’ originally given by Equation 41, becomes

+ 7!

' =
z 1% %

t 1
1 Za + ch

are defined in

Both

Here, Z;l and Zg a broader sense than Equation 28 to include

2
all kinds of penetrations.

circuits in Figures 16 and 17 can also

be easily extended to describe a N-surface shield with N > 2,

c. General circuit

7t
ZT and

QT over the period of the bondings) can r

When there are periodic bondings connecting the shields,

5& (the average values of Z% and

be calculated from the circuit in Figure 26 or from Equation 55 (or

equivalently, Equation 52). The constant q (qu/d may be named the

effective shunt admittance per unit length of the bondings) in Equation 55
and Figure 26 is a complicated function of the shield and bonding para-

meters (Eqs. 56 through 58). However, when the conditions given in

Equations 53 and 54 are met, q is approximately equal to 1, i.e.,

Equation 55 reduces to Equation 43, The truth of this statement is

further supported by the curves in Figures 27 and 28 for q and the

curves in Figures 18 through 25 for the normalized Z.

T
to their corresponding values for no bonding strap, i.e., Equation 55

with q=0).

and 5& (normalized

Actually, in Figures 18 through 25, the curves of Equation 43
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agree with those based on the exact Equation 55 even in the region where

hd < ag (i.e., the condition hd >> ag in Equation 53 is violated, and q
is quite different from one as shown in Figures 27 and 28), provided hd
is not close to nm. One thus concludes that when qs > 0.1, ]hd -
/:§IZI d |<<1 and hd is not close to nm (n=1,2, ...) Equation 43

or the circuit in Figure 26 with q=1 is a good approximation for

= -
calculating ZT and QT'

From the results presented, one concludes that in order to shield
against the distributed excitations more effectively, the periodic
bondings should be implemented in such a way that Zéle is large and

wd/c < 7 for the important parts of the EMP spectrum.

d. Examples

Consider a coaxial double shield (Fig. 2) with outer radius
b =5 cm, inner radius a = 3 cm and with highly conducting bonding straps
of radius t = 1 mm. Also, take the practical values Gy = Yél/Yél = 0.004
= ' ' =
and q, ZTl/ch 0.01. Then,

v ~ -1
chYd 6.7 (m 7)
from which
2 for d=0.3m
q = 7' Y d =
S el d 1 for d=0.15m

From Figures 20 and 21, one immediately sees that the normalized transfer
functions are less than 0.1 (i.e., the bonding straps reduce the EMP

penetration by more than 20 dB) for

470 MHz when d=0.3m
frequencies <
940 MHz when d=0.15m

Both 470 MHz and 940 MHz are extremely high to be important.
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However, if the bonding straps between the coaxial double shield give

\J
a much smaller chYd value, say,

-1
' =
chYd 0.67 m

then, when d = 0.15m 1is used the same quality in the shielding effective-

ness as that of Zéle = 6.7 m.l and d = 0.15 m can be obtained only for

frequencies up to at most 300 MHz (see Fig. 18). Thus, bonding straps
/

with greater Zéle are preferred.
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I. INTRODUCTION

One of the most effective methods of protecting . system from undesirable

EMP effects is by use of shielding. Although the basi: principles of

shielding for a single-surface enclosure are well understood (Ref. 1), the

extension of these principles to multisurface enclosures is by no means

i straightforward. Unique to multisurface shielding is the mutual interaction
among the shields, which may degrade the intended shielding performance of
the enclosure. Another unique feature is the bonding that is often employed
between the shields in order to reduce electrostatic hazards. This bonding
practice may have an adverse effect on the protection of a shielded enclosure
against magnetic-field penetration. The effects of shield-shield interaction
and bonding will be treated in this report.

Figure 1 shows various topics that will be addressed in this report.
In Section II, the problem of two concentric spherical shields will be solved
| using the theory of inductive shielding (Ref.l), and the results will be

generalized to N-surface spherical shields. The corresponding results for
cylindrical shields will be presented in Section III. Equivalent circuits
will be constructed in Section IV to interpret the analytical results for

a two-surface spherical enclosure; the results will be generalized to two-
surface enclosures of arbitrary shape. In Section VI the effect of bonding
on magnetic-field penetration into a two-surface enclosure will be discussed.

Finally, the most important results are summarized in Section VII.

The underlying assumptions of inductive shielding are (1) the electric
field is neglected everywhere except in the enclosure's wall where it is
related to the induced current by Ohm's law, and (2) the wall thickness

is much smaller than the typical linear dimension of the enclosure. 1In

d RANERSY Ea
L
it i atotdlid e

addition, this report assumes the wall thickness to be smaller than the

‘ wall's skin depth, except in Section V where this assumption is removed.
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II. SPHERICAL SHIELDS

In this section, the problem of two concentric spherical shells will
-t first be treated with explicit simple engineering results given in frequency
I and time domains. The results for two shells will then be generalized to N
concentric spherical shells. Discussions of equivalent circuits, generalization
to shields of arbitrary shape, and effects of electrical bonding between the
shells will be relegated to later sections.

1. TWO SPHERICAL SHIELDS

Figures 2a and 2b show an enclosure with two concentric spherical shields
immersed in a slowly varying magnetic field Ho(t) . Insofar as the penetrant
field Hi(t) is concerned, one may replace Figure 2a with Figure 2b with
appropriate boundary conditioms that duplicate the shielding properties of
the walls (Ref. 1). The magnetic scalar potential ¢ for the three regions shown
in Figure 2b takes the form

: 2

¢, = - Hrcosd +A cosd r>a

1 o r2 -1
3
%1

¢, " Brcosé +C :2- cos® a,2r?2a,

- |
¢y = Drcosb r<a, ) |

where ﬁo is the Laplace transform of Ho(t). The constants A, B, C and D are ¢

determined by the following boundary conditions (Ref. 1 and Appendix A):

=
% ]
2, 3 e 3 -
! TR TR L at r=a;
3 3
ot 22 732 Oy at r=a, (2)
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2 CIR -
Vs (¢2-¢1) = squlcl - @l, at r=a

2 )
Vs (03-02) SU 8,0, == ¢, at r=a, (3)

Equations 2 mean that the normal component of the magnetic field is countinuous
across the shield, while Equations 3 state that its tangential component is
discontinuous by the amount of the current induced in the shield. From

Equations 1 through 3 one finds that

L4

et 1

— = 3 3 (%)
Ho (li—tls)(l-krzs) - (az/al) T, 1,8
with
_1L R
T1 T3 H24191%
_1 R
T2 = 3 B522925 (5)

If no interaction between the shields is assumed, Equation * becomes

¢

£ = L (6)

(l+119(1+129

= 1]
o

no int

as one would expect, since Equation 6 is the product of the transfer function

of each individual shield. Equations 4 and 6 are plotted in Figure 3.

The time-domain solution of Equation 4 is

Hi(t) . 1 (e-tlrl i e-t/T2>
3

H
o 2
/(rl-rz) + 47

(7

172
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where

21:11:2(1 - a3)
Tl,z = (8)

2 3
‘tl+ T, F /(1:1- 1'2) + 4111201

and o = az/al, while the time-~domain solution of Equation 6 is

H,(t) -t/ -t/1
L 1 <e 1_ . 2) (9)

B T
° no int

Here, Ho is the impulse strength of the external fields, and for most
applications can be taken to be the time-integral of the magnetic field of
a typical high-altitude EMP (Ref. 1).

Equations 7 and 9 are plotted in Figure 4 where one may see that for the
case az/al = 0.9, the neglect of shield-shield interaction amounts to 20%

underestimate of the penetrant field.

From the viewpoint of the EMP hardness designer the currents induced
in each enclosure's shield are important, since they are the only means to
prevent the external field from penetrating into the interior of the enclosure.
Let K,, and I~(2¢ denote the induced sheet currents in first and second shields

14
of Figure 2. Then, from Equations 1 through 3 one obtains

39 39
> L1 2 _ 1 1 -
k1o a, 3  a; 36 (at r=a,)

'rls(l + 'rzs) - a3r 1'252

= - % ﬁo 13 7 sing
(1+Tls)(l+tzs) - a7TyT,s
3¢ 3d
~ 1 3 1 2
K2¢ a, 38 a2 30 (at r’az)
. T,8
- - -;- H 2 3 sind
(1+tls) (l+rzs) - aTTyT,8
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These expressions for the currents will give a clue to construct equivalent
circuits in Section IV,

2. N SPHERICAL SHIELDS

i denote, respectively, the field that penetrates

into a two-surface, three-suyrface, ... N-surface spherical enclosure.

Lec @2, &, . a®
i i
For a two-surface enclosure Equation 4 gives

3
q . (22 2
I-IQ/Hi (l+'rls)(l+125) (al) T,

=1+ ('Tl+1‘2)s + [1- (32/31)3 ]111252 (12)

For a three-surface shielded enclosure (Fig. 5a) one uses the same,

although more complicated, procedure for the two-surface enclosure and finds
= a3 _ 3] 2 [ 3] 2
Ho/Hi =1+ (-rl+12+r3)s +[l - (az/al) T T8 + {1~ (33/a2) T,T48

3 2 3 3 2
+[ 1- (a3/al) ]1'3113 + [l - (az/al) ] [1 - (a3/a2) ]rlrzr3s (13)

The poles of ﬁi(s) in the complex s-plane for two and three spherical
shields are given in Table 1. These poles will immedjately enable one to
plot the frequency spectrum of the penetrant field, since they are the
"break points" in the log-log scale plot (Fig. 6). From the table it is
clear that as the second and/or the third shield get closer to the outer
shield, the pole corresponding to the outermost shield moves toward the juw-
axis away from its unperturbed value -1, while the pole corresponding to the
second (third) shield (the second (third) column of Table 1) moves away from

its unperturbed value -1/a (-l/az) further away from the jw-axis.

For an N-surface spherical enclosure (Fig. 5b) one can write down, on
a close examination of Equations 12 and 13,
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t TABLE 1. s~PLANE POLES FOR TWO- SURFACE AND THREE-SURFACE SPHERICAL

E ENCLOSURES. THE VALUES ARE FOR § = 1,5 WITH
7 a = az/a1 = a3/a2 AND 12/11 = 13/12 = q
¥
=
3 Two Shields Three Shields
o _ - - = Z
Sl S2 Sl S2 53
- 0.1 - 1.00 | -10.01 -1.00 | -10.01 | -100.11
3
.
0.2 -1.00 [ -5.05 -1.00 | -5.06 | -25.25
i 0.3 -0.99 | - 3.46 -0.99 | -3.43 | ~11.55
' 0.4 -0.96 | - 2.77 -0.96 | -2.67 | - 6.96
‘ 0.5 -0.91 | - 2.52 -0.90 | -2.29 | - 5.10
] 0.6 -0.83 | -2.57 -0.79 | -2.13 | - 4.49
3 0.7 - 0.73 | - 2.96 - 0.66 | - 2.17 | - 4.72
E i
f
r 0.8 -0.65 | - 3.9 -0.53 | -2.56 | - 6.03
0.9 - 0.57 | -7.22 -0.42 | - 4.10 | - 10.81
0 =
0 3 S
C O T.
3L 70\
= | '...
T !
= |
3L l
T |
i |
11 uﬂ_ul _41 | !_J
W W, Wy

g Figure 6. Frequency spectrum asymptotes and break points where ;i,

;é, 65 are given in Table 1 (@ = |5/, ay = |s,[, ete.).




N N,N
L (N) 2 [ 3]
H /H =1+ s T, + s 1 - (a,/a.) T.T. + ....
i izl i igj i 73 i3

N
3
v  +sV T [l - (a,/a, )3] T, (14)
' =1 i"7i-1 i

where a, = . As expected, ﬁiN) has N poles lying on the negative real axis
of the s-plane.
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III. CYLINDRICAL SHIELDS

The procedure of solving the problem of a multisurface cylindrical shield
where the external magnetic field is perpendicular to the axis of the shield
follows exactly that of the spherical shield described in Section II. The
other polarization where the external magnetic field is parallel to the axis of
the shield is treated in Reference 2. From the geometry depicted in Figures

7a,d one can immediately write down

= -} A
@1 = Hop cos¢ + > cosd o} :-bl

- <
¢, = Bp cos¢ + 5 cos¢ b1 >p 3_b2 (15)
QB = Dp cosd o) g_bz

Applying at p = bl and p = b2 the boundary conditions (Ref.l)

5 3 _
3 %1 "% %2 P =Dy
" | — = B—. -
3 22 = 30 U3 p=by
vo(¢, - ¢,) = st 2 ® o=b
2 1 13 71 1
Vz(fb - $,) = st I =b (16)
s 3 "2 2 3p ‘2 ° T 0
; to Equations 15 one gets
fzvi ?1(5) _ 1 : 2 an
~Ti} Ho(s) (l+stl)(l+st2) - (b2/bl) t1t,8
R
b where
83
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=1
£ =7 HoP1%918
(16)
=1
2 = 7 HoPp928
Similarly, for a three-surface cylindrical shield (Fig. 7b) one has i
. =(3) .y . [ 2] 2 [ z] 2
Ho(s)/Hi (s) 14—(t1+t2+:3)s + 1-(b2/b1) £ tps 1- (b3/b2) tytqs

3 * [l_(b3/bl)2 ]t3tlSz + [1"(bz/bl)z][l"(b3/b2)2]t1t2t3s3

(19)

and for an N-surface cylindrical shield (Fig. 7¢) ome has

N N,N
4 g (s)/ﬁﬁN)(s) =1+s ) L, + 82 2 [1 - (b./b.)z] t.t, + ...,
3 o 1 i’l i>j 1 J 1 J
!
N
R [1 - (bi/bi__l)z] t, (20)

|

where b0 = o, A comparison of Equations 17 through 20 with Equatioms 4, 5, 13,
and 14 reveals that the results for spherical shields obtained in the last

section can be directly used for cylindrical shields if one replaces

spherical shields cylindrical shields
3 2
(ai/aj) by (bi/bj)
T by ti

Therefore, in the following two sections on equivalent-circuit representation

and effects of bonding,discussions will be restricted only to the case of

spherical shields.

L Table 2 gives the s-plane poles for éi

shields, while Figure 8 shows the frequency spectrum asymptotes and break

for two and three cylindrical

points for |H /H |.
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TABLE 2. s-PLANE POLES FOR TWO-SURFACE AND THREE- SURFACE CYLINDRICAL
SHIELDS. THE VALUES ARE FOR s = st; WITH 8 = b,/b, =
b3/b2 AND tz/tl = t3/t2 =g
Two Shields Three Shields
° s s, s s, ;5

0.1 - 1.00 | -10.11 - 1.00 | -10.10 | -101.12

0.2 -0.99 | -5.26 -0.99 | -5.21 | - 26.30

0.3 -0.96 { - 3.80 -0.96 | -3.66 | ~ 12.68

0.4 -0.92 | -3.25 -0.91 | -2.98 | - 8.20

0.5 -0.85 | - 3.15 -0.82 | - .67 | -~ 6.51

0.6 -0.77 | - 3.40 -0.71 | -2.60 | - 6.13

0.7 -0.69 | - 4.07 -0.59 | -2.20 | ~ 6.74

0.8 -0.62 | - 5.63 -0.49 | -3.47 | - 8.85

0.9 -0.55 | -10.56 -0.40 | -5.8 | - 16.09
10° t t
— Nt
3 4’3,)
z§° ,
3

I

Ll lllllll

{1

|
N

Figure 8.

@

Frequency spectrum asymptotes and break points given in Table 2.
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IV. EQUIVALENT CIRCUIT REPRESENTATION - GENERALIZATION
TO SHIELDS OF ARBITRARY SHAPE

The results obtained in the last two sections will be interpreted in
terms of equivalent circuits in this section. The advantages of equivalent
circuit representation of mathematical results are two-fold: (1) it is useful
for interpreting results and understanding physical mechanism involved, and
(2) it is a quick way to generalize the results for specific shapes of en-

closure to arbitrary shapes of enclosure.

To gain more familiarity with what follows one starts with one-surface
spherical shielded enclosure (Fig. 9a) whose low-frequency transfer function
is (Ref. 1)

?1(5) = l:;s (21)
HO(S)
with
= L 2
T 3 uoaOA (24—)

where Hy» 95 8 and A are defined in Figure 9a. Equation 21 can be represented

by either the equivalent circuit of Figure 9b or Figure 9c where

1 1
L = 3 uoa, R 5A (23)

The inductance L can be expressed in terms of the volume V and the surface S

of the enclosure as

L= ro/S (24)

which also applies directly to cylindrical as well as two-parallel-plate
enclosures (Ref.l). Equation 21 can thus be used as the transfer function
of a single-surface shielded enclosure of arbitrary shape if t 1s interpreted

as
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[ VRS SR

» t=z (25)
»i with L given by Equation 24 and R by (oA)-l.
143 The extension of the equivalent circuit given in either Figure 9b or 9c

1 for a single-surface enclosure to a two-surface enclosure turns out to be a
1 nontrivial matter. In principle, one may start with the transfer function
given in Equation 4 and constructs an equivalent circuit for it using the

techniques known in circuit synthesis (Ref. 3). This approach, however, does

E not easily lead to a circuit which represents the actual physical phenomenon
‘ of the problem. To derive the desirable circuit one returns to the induced
ﬂ'i currents in the shields given by Equations 10 and 1l1. The total induced

7 current in each shield is obtained by integrating Equations 10 and 11. Thus,

3 2
rls(li-rzs) - a7y T,8

13 - T .
B I, = K, a,d6 = - 3H a (26)
1 1 J 1671 o'l 3

' 0 (1+1,8)(L+1,8) - (az/al) T,T,8

:

§ . "T!' . . '1.'28

. I, = K, a,d8 = - 3H a (27)
: 2 % 2672 02 (l+'rlS)(14-Tzs) - a3rlrzsz

o

To generalize Equations 26 and 27 to two- surface enclosures of arbitrary

shape one simply sets

L

T s T
1 Rl 2 2

L
= ottty = MR RY) (28)

where the self-inductances Ll’LZ’ the mutual inductance M,and the resistances

Rl,Rz are given by

L. = u°vl L. = u°V2 MZ = X& L.L
L ’
1 Sl 2 2 V1 172
(29)
1 1
R, = R R, =
1 clAl 2 02A2
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Here, Vl and V2 are the volumes enclosed respectively by the surfaces S1 and 52
of the first and second shield. Equations 26 and 27 can be written in the

general form

sL(ﬂ.+R)-s%ﬁ -
= 1'°72 ™2
I, = 5 Io (30)
(ﬂ1+RQ(ﬂ?+RQ - 8™

-~ SMRl -~
I, = 33 Io (31)
(SLl*'Rl)(stﬁ-Rz) - s™M

with

I, =~ 3H°al (32)

It can be easily verified that the equivalent circuit shown in Figure 10 leads

to Equations 30 and 31.

It remains to show how il and iz are related to the penetrant field ﬁi

given by Equation 4, which can be expressed in the generalized form

1]

1 by
- = 73 (33)
Ho (sLl+ Rl) (st + RZ) - s M
From Equations 30 and 31 one gets
L R:R
1-%—<i1+M—212)= L2 — (34)
Io (ﬂq+Rﬁ(ﬂQ+R? - 8™

The scaling factor L2/M can be expressed in terms of the geometric parameters

of the two shields with Equations 29 and is given by

30
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Hence, one has on comparing Equations 33 and 34

. 5, -
I1 + §; I (36)

which is to say, one can first calculate I

¢

—i=l-

o o

= o]
HeP~

1 and iZ from the equivalent circuit
of Figure 10 from which the penetrant field ﬁi is directly deduced from

Equation 36. i

A final point should be made about the scaling factor /51782 in Equation
36. This factor comes about because the magnetic field H is proportional to

current density R rather than the total current I.
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V. TWO SPHERICAL SHIELDS OF ARBITRARY ELECTRICAL THICKNESS

In the previous sections the thickness of the shield's wall was assumed

| to be electrically thin. This assumption holds true for low frequencies
and/or poorly conducting shields. In this section this assumption will be

removed and the shield's wall can be of arbitrary electrical thickness.

As in Equation 1 let the scalar potential ¢ for the three regions shown

in Figure 2b take the form

i 2)
<I>l = - Hor cosf + A' -3 cosé r 2 a
r |
g
¢, = B'rcos8 + C' r—z- cosH aj>2r>a,
¢y = D'r cos® r<a, 37

Instead of the boundary conditions given by Equations 2 and 3, the boundary

conditions are now given by (Ref. 1)

3 _ 2 _
. T (¢2+®l) = ale(¢2—d>1) at r=a,
"
2 6.-0) =3.9%(.+0.) atr=a (38)
ar 2 1 1's 727 "1 1
- 3—(<1> +<b)=aV2(<I> -¢,) atr=a
- or 3 2 2's* 73 2 2
.'i:"
7’% & (6,-0) =872, +0.) atr=
g o (237 %) = BV (0 +e,)  at r=a, (39)
e “
T where
{ L G
i HoPy tanh(pi/2)
u.a
< i%1
| g, = tanh(p,/2)
! i qui i
2 2 40)
Py ™ Su;0;84 (
93
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and 1 =1,2. The constants A', B', C' and D' can be found by substituting
Equation 37 into Equations 38, 39 and 40, and are given in Appendix A. The

penetrant field ﬁi is obtained from -V¢3 and given by

'y 1

~ . 3 . .
+ + -
Ho (coshpl Klplsinhpl)(coshp2 K2p251nhp2) (az/al) Klp1K2p251nhp151nhp2

(41)
with

(42)

Just like Equation 4 the combined transfer function of two shields is the
reciprocal of the product of the transfer functions of individual shields

minus an interaction term.

For electrically thin shield walls (i.e., PysPy << 1), Equation 41
reduces to Equation 4, as it should. On the other hand, if the shield's

walls are electrically thick (i.e., P1sPp >> 1), then Equation 41 gives

t

. A ‘(P1+P2)
=~ = 3 (43)
H (1+Klp1)(l +K2p2) - (az/al) K,p1K,p,

in which one may drop the ones in comparison with Klpl and K However,

Pas
252
Equation 43 is preferable since it is similar in form to Equation 4 for the

case of an electrically thin shield.

Equation 43 is plotted in Figure 11 with and without the interaction
term (az/al)3K1p1K2p2. It can be concluded that for az/al = 0.9 and wt, > 100

(which corresponds to f > 16 kHz for 1, = 1 ms), the shield-shield inter-

2
action reduces the shielding effectiveness by at least a factor of 3 or 10 dB.

94




.Amno: L= Nm\w< Cy = ly) sprotus Teovaoyds ¥O1U3

(o]
AT1e21239912 0oM1 10} _ :\M:_ uoriounj iajsuell ayl jo wnilodads Aousanbary 77 2andyy

Sm
+0! ¢Ol el ol
N // | I g-O!
i o0 — 3
x
uolaDIeLUl £
PIBiys - plelys OU —— - —— =
¢p uoyonbe m.n~
w 3
,. B —14-O!
]
3 l 1 2.0l
".




5 187  NISSION RESEARCH CORP ALBUSUERQUE NM F/6 20/3
AD-ALL WY Iﬂ. A"LICA'I'ION 0" MY!UY!I ﬂilﬂ.bl'“ FOR nunw. E" F!!L—!YC(U)

C YANS, K
AFWL=TR=81=1

| END
| oare
| ‘




s @

-
n
&
=
N
o0
=
N
(%]

|10 &2 =

= 12
[

o S

== m“ﬁ

=

ez 1

B
=

ll=

i

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS:1963-A




VI. EFFECT OF BONDING

Although bonding is often employed between shields in engineering
practice to reduce electrostatic hazards, there is no quantitative information
on its possible effect on the shielding performance of a shielded enclosure
against the low-frequency magnetic-field penetration. This section is
devoted to calculating this effect for two electrically-thin spherical
shields.

Figure 12 shows various types of connection arrangements of bonding
straps between the two surfaces of a spherical enclosure. Later in this
section it will become clear that the bonding strap arrangements (a) through
(d) have no effect on the magnetic-field shielding performance of the
enclosure, while the arrangement (e) has a significant adverse effect.
Before proceeding it is appropriate to remark that the low-frequency electric
field within a conducting enclosure comes mainly from the eddy currents
in the enclosure's wall induced by the time rate of change of the external
magnetic field. It is this electric field that is affected by the bonding

straps in the inductive shielding approximation.

Return now to Figure 12e (which is redrawn in Figure 13) and calculate
the current induced in the bonding straps. Let the unprimed quantities
be the quantities in the absence of the bonding straps, and the primed
quantities the quantities due to the presence of the bonding straps. Then,
integrating the equation

UxE = - suoﬁ (44)

over the area enclosed and traced out counter clockwise by the loop BCDAB

of Figure 13, one gets

t -y ' .
Vac*Vac ~Vap " Vap ™ S*ancoa *SYascoa (43)
where V is the voltage drop and y is the magnetic flux. In deriving
Equation 45 the bonding straps have been assumed to be good conductors;
otherwise, a term for the voltage drop along AB and CD has to be added to
the left hand side of the equation.
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Let ib = current in bonding strap, Lb = inductance of one bonding strap,

RBC or RDA = resistance between B,C of the outer shield, or D,A of the inner
fw shield. It is obvious from Equation 44 that

! Iy (Rgg +Rpp +28Ly) = s%,p0pn ~Vae * Vap

s¥,ncpa ~ ¥oBco * #¥oano

- sCoap * Yoop’

i‘ = - ZsWOAB (46)
The second step of the right hand side follows from repeated applications of

Equation 44. It has been assumed for simplicity that the two bonding straps

are identical. Hence, the triangle OAB is equivalent to the triangle OCD.

Similarly, an application of Equation 44 to the area enclosed by the

loop BADCB going counter clockwise in Figure 13 gives Equation 46, as it
should.

Solving Equation 46 for ib and using the expression in Appendix B for
WOAB one obtains

. - 2s¥
3 i OAB

=
b RBC+RDA+23Lb

-~

t
{
t
N . FHO s(l-ﬁsTo) @)
3 Rs (1+sTb)(1+sT1) (l+sT2)
a :I
where Rs'RBC+RDA’ Tb-ZLb/Rs, '1'1 and T2 are given in Equation 8, F and To

are given in Appendix B, It can be shown that for practical cases To is

small compared to the decay time comstant T of the inner shield. Hence

for low frequencies one may use the approximation

ib 8T,
V /R "o (1+8T ) (1+8T,)(1+sT,) (48)
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with Go - Fﬁoltz, where Fﬁo is identically equal to the external magnetic
flux linking the two triangles shown in Figure 13.

The magnitude of Equation 48 is plotted in Figure 14 against wTy with
Tb/'t2 as a parameter. The time histories of Ib and Ib are shown in
Figures 15 and 16 for an impulsive external magnetic field HOG(t), which
is a valid representation of any pulsed external field whose pulse width is
less than the diffusion time through the shield's wall. The diffusion time
of a typical metallic enclosure is on the order of tens of microseconds. The
% 1 parameter Tblt2 is roughly equal to the ratio of the inductance of the two
bonding straps to the inductance of the inner enclosure, the latter being

given by uoa2/3; that is to say

T. 2L 6
— —L—b-. = L;b (49)
2 2 Ho%2
where L, can be estimated from the approximate formula
M2
L, = 5. (/1) (50)

with £ = length of one bonding strap, r = effective cross-sectional radius
of the strap. It can be seen from Equations 49 and 50 that Tb/r2 is usually
less than unity. The smaller is this parameter the more current will be

induced in the bonding straps, as can be observed in Figures 14 through 16.

;ﬁ Of course, the more current there is in the bonding straps the more

;; penetration there is into the enclosure, Table 3 summarizes the peak

;3 values for Ib(t) and Ib(t) for various values of Tb/rz. In the table it
.?? is assumed that aZ/a11-0.9, R, = (aA)-l, and the two shields have the same
ifj thickness, conductivity and permeability.

;7‘

To get some rough estimate on the field due to the bonding strap
current Ib one may divide Ib by Zwaz. From Table 3 and for the case
Tb/t2 = 0.01 the peak penetrant fields due to Ib are

100
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TABLE 3. PEAK VALUES FOR I, AND Ib

Tb/r2 0.01 0.1 0.2 0.5 1 >5
TZIb(peak) 0.43 T,
—_ 3.1 1.57 1.11 0.61 0.36 | ———=
Hoazsin¢° Tb

2.
TZIb(peak) 3.7 T,
_— 370 37.0 19.0 7.4 3.7
Hoazsin¢° Tb
¢ 1
Hi )(peak) = 5?; Hosin¢°
- (1) 60
Hi (peak) = :E-Hosin¢° (51)
2

That part due to direct field penetration can be read off from Figure 4 for
aZ/a1 = 0.9 and is given by

(0) < 0.4
Hi (peak) = T Ho

2

3.5
: 52
7 B (52)

°
2

ﬁio)(peak) =
T

The total peak penetrant fields,Hi(peak) and ﬁi(peak), with bonding straps
are the sum of Equations 51 and 52. It can be seen that the bonding straps

will increase Hi(peak) by a factor of two and ﬁi(peak) by as much as an
order of magnitude.
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VII. CONCLUSIONS

It is found that the inductive interactions among the shields and the
presence of conducting straps bonding the shields reduce the effectiveness
of a multisurface shielded enclosure against the penetration of external
magnetic fields.

For a two-surface spherical shielded enclosure the important findings

can be summarized as follows. Let

Hi p = peak interior (penetrant) field
]

ﬁi P = peak time rate of change of Hi(t) = peak electromotance force
)

(emf) density
lﬁil = frequency spectrum of H, (t)
and let the ratio of radii of inner to outer shield =0.9,.

1. Neglect of interaction of electrically thin shields underestimates

Hi,p by 20%

L ﬁi,p by a factor of 4
. |ﬁi| by one order of magnitude for £ > 100 kHz and enclosures

with L/R time constant = 100 us.
2. Neglect of interaction of electrically thick shields under-estimates

] Iﬁil by a factor of 3 for f > 160 kHz and enclosures with L/R

time constant = 100 us.

3. Two bonding straps, each subtending a 22.5° angle at the center
and with inductance 2Lb = 0,01 L2 (L2 = 0.2 uH for an enclosure

of one-meter diameter), increase

e H by a factor of 2

i,p

. ﬁi p by one order of magnitude
b4
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APPENDIX A
! THE CONSTANTS
- The constants A, B, C,and D that appear in Equation 1 are given by

=~ 3 2 3
‘ Ho s('rl+a rz) + 8 rlrz(l-a )
, At (L+st.)(L+sT,) - st T 0
: Ty ST, s°1y T,
. l+s1
B=-H e
(l+sv.'l) (l+s12) - s’ T,
H T 00
0 2
C=-—2—(1+ Y(1+s1,) - s 3
sty ST, s71yT,0
. . D=- ﬁo - 2 3
a (l+srl)(1+srz) - s Ty
where a = aZ/al, T, uoalclAlIS, T, = uoazczA2/3 .

The constants A', B', C', and D' that appear in Equation 37 are given by

H
‘ ' .o 4\ 2\
- A 5F (Klpl 9Klp1>slnh Py I:cosh p2+<K2p2+9K2p2>51nh pz} +
|
" 3
H } +<2)(Kp -L)sinhp [coshp -<Kp +—-—2—>sinhp
.;1 a; 2F2 9K2p2 2 1 171 9Klpl 1
.‘e’
_ B' = - =2 h + + —_—
4 . 7 cos Py (szz 9K2p2 )sinh Py
H [a,\3
C'=-—°-(-2-> (Kp -—i—>sinhp
‘ 2F a; 272 9K2p2 2
‘ .
D HO/F
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T

= a2 = A2
Pp = S¥19:%1 Py = SU3958;

- uoal - Moo

K s K
1 3u1Al 2 3u2A2

2 2
F = [cosh Py + (Klpl + 9K1p1 )sinh pl] [cosh Py +-<K2p2 + §E;E;-)sinh pz}

<a2> 1 4
- = —-—Kp)(-—-—--Kp)sinhpsinhp
a; ( 9K1pl 171 9K2p2 22 1 2

Unless K1 and K2 are much smaller than unity one may neglect terms involving

the reciprocal of Klpl and K2p2 and obtains for F the following accurate
expression

F = (cosh Py + Klplsinh pl)(cosh ) + szzsinh pz) -

3 .
- (aZ/al) Kllezpzsinh pls1nh P,
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APPENDIX B
CALCULATION OF V/O AB

The magnetic field at the equatorial plane (6 = 7/2) can be found from
Equation 1, namely,

. 5o 3,3
8 HS B+Ca1/r, a,<r<a

=] 32>r

The magnetic flux ¢ can then be calculated via (Fig. Bl)
g OAB

wOAB = - U, J J Heds

OAB
' a§¢° 219
: =- U -—E-D+J JO B+C—- rd¢dr
%2
' a§¢° a1 -1 a siny
» = - U ———-D+I sin -y({ B+C rdr
& o 2 A
f 2
{ 2 2
» a,b a;a a
2’0 172 2
=-u) 2 D+B[ 2 sin¢ 2—'¢°]
.« -
e 3 ¢° cosy - cos(y+ 4>°)
¥ + C al _— - in
» a, a siny
®
i ) 1 +sT° FHO
B 2

(1+ s'rl) (1+ 312) ~ 0332111:2

where

F= uoalazsin¢°

'I'o =T, [(l -a) + o can(¢°/2) (t:os¢o -a)/sin%]
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Figure Bl. Geometry for calculating the flux wOAB'
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